Internet Addiction, Psychosocial Variables and Perceived Social Support in University Students
PDF
Cite
Share
Request
Original Article
VOLUME: 11 ISSUE: 1
P: 54 - 60
March 2023

Internet Addiction, Psychosocial Variables and Perceived Social Support in University Students

Namik Kemal Med J 2023;11(1):54-60
1. Ministry of Family and Social Services, İstanbul Bahçelievler Social Service Center Directorate, İstanbul, Turkey
2. İstanbul University-Cerrahpaşa Faculty of Health Sciences, Department of Gerontology, İstanbul, Turkey
No information available.
No information available
Received Date: 15.01.2023
Accepted Date: 24.01.2023
Publish Date: 17.03.2023
PDF
Cite
Share
Request

ABSTRACT

Aim:

The aim of this study was to examine socio-demographic data and perceived social support that predict internet addiction in university students.

Materials and Methods:

Randomly selected 399 university students living in Istanbul, the data collection tools were delivered over the internet, were included.

Results:

The frequency of internet use has been determined that 31.83% of the participants use the internet for five hours or more a day, and 72.18% use the internet seven days a week. It was determined that there was a significant difference between the internet addiction level of the participants and their age (p=0.010) and marital status (p=0.017). No significant difference was found between marital status and perceived social support level (p=0.845). It was determined that the level of perceived social support had a negative and significant effect on internet addiction at the level of -0.199 (p=0.000).

Conclusion:

The results of our study indicate that as the perceived social support level in university students increases, the level of internet addiction decreases. Studies are needed to determine the mediating factors between perceived social support and internet addiction.

Keywords:
Internet addiction, problematic internet use, perceived social support

INTRODUCTION

The main purpose of the occurrence of the internet around the world is to increase communication. The fact that the Internet is an addictive tool was put forward in a study conducted by Goldberg1 in 1996. Which was seen to have entered the international literature for the first time with the concept of “internet addiction”, was later named with different concepts by different clinicians and researchers2,3. In recent years, problematic internet use has become a preferred concept in the literature4. In the studies performed, use for longer than 5 to 6 hours a week and for relatively long continuous periods of time are generally taken into account.  Long-term use may be related to the craving for internet and/or the need to connect to the internet in case of negative emotions such as loneliness and sadness5.

When the psychosocial factors related to the excessive use of internet are examined, loneliness appears as a research area. Chou and Hsiao6 stated in a study they conducted that increases in internet usage rates reduce the time needed to be devoted to real social relationships and face-to-face relationships, cause social isolation, and increase loneliness. Hamburger and Ben-Artzi7, on the other hand, emphasized that internet addiction did not increase loneliness levels and that internet addiction emerged as a result of loneliness. Social support can be briefly expressed as helping individuals by the people around them. In situations such as crisis and emotional tension, individuals need to rely on family members, friends and surroundings, who are seen as natural helpers8,9. Individuals whose social support needs are adequately met feel safe and have good goals. The students who cannot get the necessary social support from their environment try to fill the support gap with other methods. One of the important variables is perceived social support in the literature on internet addiction. People can seek support in the virtual world via the internet10.

Young11, created the first diagnostic criteria for internet addiction, argued that internet created addiction like gambling and that internet addicts had some symptoms of impulse control disorder. Pathological Internet users had “behavioral impulse control disorder” and this impulse control disorder did not involve the intake of a chemical substance. Therefore, Young11 adapted the “pathological gambling diagnostic criterion” that best fits this definition to pathological internet use. Thus, he created and published the first serious diagnostic criteria for Internet addiction.

Many studies emphasized that the internet is a stand-alone action to improve people’s social networks12. Individuals with high social anxiety levels, who think that communication in the virtual environment carries less risk than face-to-face communication, spend more time on the internet13. Sanders et al.14, examined whether high levels of internet use were associated with social loneliness and depression in high school students, and it was found that high internet use was associated with weak social ties. However, the direction of the relationship could not be determined. In addition, the relationship between the level of internet use and depression is significant15.

In this context, there is a need to examine the internet usage patterns of young people, who are thought to be an important risk group for problematic internet use. The aim of this study is to obtain information about the frequency and purpose of internet use among university students, to determine the relationships between internet addiction and social support. Another aim of the study is to determine the relationships between internet addiction and demographic variables such as gender, age and marital status.

GİRİŞ

Dünya genelinde internetin ortaya çıkmasındaki temel amacın iletişimi artırmak olduğu görülmektedir. İnternetin bağımlılık yapıcı bir araç olduğu ise Goldberg’in1 1996 yılında yaptığı bir çalışma ile ortaya atılmıştır. Uluslararası literatüre ilk defa “internet addiction” kavramıyla girdiği görülen bu kavramın daha sonradan farklı klinisyen ve araştırmacılar tarafından farklı kavramlar ile isimlendirildiği görülmüştür2,3. Son yıllarda problemli internet kullanımı alanyazında tercih edilen bir kavram olmaya başlamıştır4. Yapılan araştırmalarda genel olarak haftada 5 ila 6 saatten çok ve görece uzun zaman dilimlerinde devamlılığı olan kullanımlar dikkate alınır. Uzun süreli kullanımların bireylerin yalnızlık ve üzüntü gibi olumsuz duygulanımlar karşısında internet aşermesi ve/veya internete bağlanma gereksinimi duyması ile ilgili olabileceği düşünülmektedir5.

İnternet aşırı kullanımı ile ilgili psikososyal faktörlere bakıldığında yalnızlık bir araştırma alanı olarak belirir. Chou ve Hsiao6 yapmış oldukları bir çalışmada internet kullanım oranlarındaki artışların gerçek sosyal ilişkilere ayrılması gereken zamanları ve yüz yüze kurulan ilişkileri azalttığını, sosyal izolasyona neden olduğunu, yalnızlıklarını artırdığını belirtmişlerdir. Hamburger ve Ben-Artzi7 ise internet bağımlılığının yalnızlık düzeylerini artırmadığını ve yalnızlığın sonucunda internet bağımlılığının ortaya çıktığını vurgulamışlardır. Sosyal destek; bireylere çevrelerindeki insanların yardım etmesi şeklinde kısaca ifade edilebilir. Kriz ile emosyonel gerginlik gibi durumlarda bireylerin, doğal yardımcı şeklinde görülen aile üyeleriyle arkadaş ve çevresine dayanma ihtiyacı duymaktadırlar8,9. Sosyal destek ihtiyacının yeterince karşılandığı bireyler kendilerini güvende hissetmekte ve iyi hedefler edinmektedirler. Çevrelerinden gereken sosyal desteği alamayan öğrencilerin destek boşluğunu başka yöntemlerle gidermeye çalıştıkları görülmektedir. İnternet bağımlılığıyla ilgili yapılan çalışmalara bakıldığında önemli olan değişkenlerden birinin algılanan sosyal destek olduğu görülmektedir. Örneğin internet aracılığı ile sanal dünyada kendisine destek arayabilmektedir10.

İnternet bağımlılığı konusunda ilk tanı ölçütlerini oluşturduğu görülen Young11, internetin kumar gibi bağımlılık yarattığını ve internet bağımlılarının bazı dürtü kontrol bozukluğu belirtilerinin olduğunu savunmuştur. Young’un11, patolojik internet kullananlarda “davranışsal bir dürtü kontrol bozukluğu” bulunması ve bu dürtünün kontrol bozukluğunun kimyasal bir madde alımını kapsamamasından hareket ederek bu tanıma en fazla uyduğu fark edilen “patolojik kumar oynama tanı ölçütlerini” patolojik internet kullanımına uyarlamıştır. İnternet bağımlılığında ilk ciddi tanı ölçütlerini oluşturarak yayımlamıştır.

Birçok araştırmada internetin, kişilerin sosyal ağlarını geliştirebilmek için tek başına yapılan bir eylem olduğu vurgulanmaktadır12. Sanal ortamda iletişimin, yüz yüze iletişimden daha az risk taşıdığını düşünen sosyal kaygı düzeyleri yüksek bireyler, bu sayede internette daha fazla vakit geçirmeye başlarlar13. Sanders ve ark.’nın14 yaptıkları çalışmada yüksek düzeylerde internet kullanımının, sosyal yalnızlık ve depresyonla bağlantılı olup olmadığı lise öğrencilerinde incelenmiş yüksek olan internet kullanımının zayıf sosyal bağlar ile ilgili olduğu görülmüştür. Ancak ilişkinin yönü belirlenememiştir. Bunlarla beraber internet kullanım düzeyiyle depresyon arasındaki ilişki anlamlıdır15.

Bu kapsamda problemli internet kullanımıyla ilgili önemli bir risk grubu olduğu düşünülen gençlerin internet kullanım örüntülerinin incelenmesine ihtiyaç duyulmaktadır. Bu çalışmanın amacı üniversite öğrencilerinde internetin kullanım sıklığı ve kullanım amaçları konusunda bilgiler elde etmek; internet bağımlılığı ve sosyal destek arasındaki ilişkileri saptamaktır. İnternet bağımlılığı ile cinsiyet, yaş ve medeni durum gibi demografik değişkenler arasındaki ilişkileri belirlemek araştırmanın bir diğer amacını oluşturmaktadır.

MATERIALS AND METHODS

This study was designed in the general screening model based on quantitative data. The scale form prepared for the research was randomly selected and sent via e-mail to 500 university students living in Istanbul, 399 of whom participated in the research by filling out this form sent to them. Being under the age of 18 years, not being a university student and having any mental illness were determined as exclusion criteria. Ethics committee approval of the study (no: 021/2017, date: 11.01.2017) was received from Nişantaşı University, Social Sciences Institute, Social and Human Sciences Ethics Committee. The study was conducted in accordance with the Declaration of Helsinki and informed consent was obtained from the participants.

Data Collection Methods

Socio-demographic Data Form

It was created by the researcher to obtain information about the demographic characteristics of the participants, the frequency and purpose of internet use.

Young’s Internet Addiction Scale

A “diagnostic questionnaire” was created by Young11 by adapting the Pathological Gambling Criteria of the DSM-IV, then it was developed and turned into a 20-question self-report scale. In the questionnaire consisting of Likert type questions, one of the options “never”, “rarely”, “occasionally”, “often”, “very often” and “continuously” is required to be marked. Scoring is done as 0, 1, 2, 3, 4, and 5, respectively. A total score of 80 or more is defined as “internet addiction”. A score between 50 and 79 is defined as “risky internet use”, and those with a score of 49 and below are defined as an “average internet user” who does not have problems related to internet use. The scale was adapted to Turkish by Bayraktar16, and the standardized Alpha value is 0.91, the Spearman-Brown value is 0.87.

Multidimensional Scale of Perceived Social Support

The multidimensional scale of perceived social support was developed by Zimet et al.17, as an easy-to-use, short scale, subjectively evaluating the adequacy of social support from three different sources. The scale consists of 12 items and includes 3 subgroups, each of which consists of 4 items, related to the source of the support. In the subgroups; “family” (items 3, 4, 8 and 11), “friend” (items 6, 7, 9 and 12) and “special person” (items 1, 2, 5 and 10) group. Each item was rated using a 7-point scale. Each item is scored between 1 and 7. The subscale score is obtained by adding the scores of the 4 items in each subscale, and the total scale score is obtained by adding all the subscale scores.

Statistical Analysis

In this study, the quantitative data obtained from both groups were analyzed with the Statistical Package for the Social Sciences 23 package program. Frequency, percentage and mean values were given for the demographic characteristics of the participants. Normality test was performed to see whether the measurement variables were normally distributed. The Kruskal-Wallis H and Mann-Whitney U tests were conducted to determine whether demographic characteristics differed from perceived social support sub-levels and internet addiction levels. In the last part, multivariate regression analysis was performed to determine the predictive effect of perceived social support level on internet addiction.

RESULTS

The participants were determined that 52.63% were female, 44.11% were between the ages of 21 and 24 years, and 94.74% were single.

83.71% of the participants had been using the internet for 5 years or more. 31.83% of them used the internet for 5 hours or more a day, and 72.18% of them used the internet 7 days a week.

When the participants’ internet usage purposes were examined, it was detected that 41.60% used internet sometimes for homework, 37.34% mostly for research, 30.08% mostly for movies, 35.09% never for games, 40.10% always for music, and 44.61% always to establish social communication (mail, msn, etc.).

Considering the websites used by the participants, it was observed that 75.69% of them used social media (Twitter, Facebook), 57.14% of them used movie/music sites, 5.51% of them used adult sites and 8.77% of them used chat sites.

There was no significant difference between gender and family support level (p=0.169), friend support level (p=0.315), a special one’s support level (p=0.528), perceived social support level and internet addiction level (p=0.790).

There was no significant difference between age and family support level (p=0.598), friend support level (p=0.355), a special one’s support level (p=0.407) and perceived social support level (p=0.619). A significant difference was found between age and internet addiction level (p=0.010).

A significant difference was found between marital status and internet addiction level (p=0.017). Single individuals [=29.92; standard deviation (SD)=16.64] were found to have a higher level of internet addiction than married individuals (=22.52; SD=16.03).

As a result of the regression analysis performed to determine the effect of perceived social support level on internet addiction, it was revealed that the perceived social support level had a negative significant effect on internet addiction at the level of -0.199 (p=0.000). While the regression model, in which the perceived social support level is the independent variable, was found to be significant (F=16.354, p=0.000), it was revealed that this model explained 40% of the change in the level of internet addiction.

DISCUSSION

The results of our study indicate that there is a significant difference between the level of internet addiction and age and marital status in university students, and as the level of perceived social support increases, the level of internet addiction decreases. In the literature, there are many studies addressing the differences in the frequency and purpose of internet use between biological gender18. According to the findings of our study, gender does not affect internet addiction and perceived social support level. However, in the study conducted by Esen and Gündoğdu19, it was determined that internet addiction scores varied according to gender, and women’s internet addiction scores were lower than men. Esen and Siyez20 remarked that the variables of gender, academic achievement, loneliness and perceived social support from the family predicted internet addiction in adolescents. While some of the studies in the literature, in parallel with the results obtained in the research, report that men are more internet addicted than women21, some of them show that internet addiction does not show a significant difference according to gender22. Karasu et al.23 examined the relationship between internet addiction of university students and social support and a statistically significant difference was found between the gender status of the students and the mean scores of internet addiction. The mean scores of internet addiction in male students were found to be statistically significant compared to female students. Different results in current studies may be due to the way of measuring internet addiction and/or variables such as cultural differences.

According to the results of our study, as age increases, the level of internet addiction decreases. The studies emphasize that the majority of internet users include young adults, especially between the ages of 18 and 24 years. It should be noted that the majority of university students are in this age range24,25. Litwin and Landau26 found that friendship networks decrease as age increases, family networks increase as education level decreases, and friendship networks increase as education level increases. In another study, it was found that there was a statistically significant difference between age and the perception of social support, the support of friends decreased as the age progressed, and the highest level of support from the family was perceived at the beginning of adolescence27. The results of the systematic review by Blasco et al.28 indicate that internet addiction increases in new generations, and that the increase in individuality and the decrease in socialization and acculturation play a role in this result.

In our study, there was a significant difference between marital status and internet addiction level. It has been determined that single individuals have a higher level of internet addiction than married individuals. In the study of Jovic et al.29, individuals who were married or had a partner and those who did not have a partner differed in terms of the duration and purposes of internet use. Individuals living with their partners mostly used the internet for leisure activities such as playing games as well as browsing pictures and music. While single participants spent more than 8 hours on the internet, participants who were more prone to addictive activities (playing games) were those living with their partners. In the study of Karasu et al.23, no statistically significant difference was found between the department, class, age, family type, marital status, place of residence, mother’s education, father’s education, father’s occupation, mother’s occupation, and family income and the mean scores of internet addiction. In a study conducted by Sancar30 on internet addiction in women, it was detected that the most frequent internet use was among engaged women. It was stated that 93% of the engaged ones used the internet every day. The second most common internet user group includes married women. It is observed that widowed/divorced women have access to the internet at a high rate of 82% every day. Less frequent use is observed to be quite low in all groups. Different results of studies showing the relationship between internet addiction levels according to marital status may be due to mediating factors such as marital satisfaction or intercultural differences.

According to the results of our study, the increase in perceived social support level in university students reduces the level of internet addiction. An increasing number of supporting groups are formed on the Internet. However, social networks play an important role in creating the perception of social support31. Similarly, Joinson32 (1999) stated that the internet provided adolescents with the opportunity to establish new social relationships and adolescents who could not develop appropriate coping methods to solve the problems in family relationships preferred the internet to meet their needs for establishing close relationships. In another study, it was observed that as peer pressure levels decreased, the level of internet addiction of adolescents also decreased21. In addition, it was observed that as family and teacher support increased, internet addiction scores decreased. In the study conducted by Gunuc and Dogan’ın33 on adolescents, it was observed that adolescents who spent time with their mothers had higher perceived social support and lower internet addiction. Similarly, Karaer and Akdemir34 emphasized the importance of improving parenting, social support and emotion regulation in the prevention and treatment of internet addiction in adolescents. Also, Naseri et al.35 stated that university students with low self-esteem were more vulnerable to internet addiction.

It is possible to say that the virtual communication environment is perceived as an environment where social relations are less risky and easier, together with the increasingly widespread use of the internet36. This turns the internet into one of the resources where individuals can easily find support from others. In a period when the Internet penetrates into every field of daily life and almost the real and virtual worlds compete with each other, it is seen that individuals can postpone their face-to-face relations and put the Internet in the first place among the resources they provide social support37. The fact that virtual social support, which is seen to be provided via the Internet, cannot be transformed into permanent relationships in real life also causes social problems, while dissatisfaction in social relations can increase the orientation to the virtual world and create a vicious circle38. In the study of Chou and Hsiao6, it was found that the increase in internet use reduced the time devoted to real social relations and face-to-face relations, and caused social isolation; it was also detected that such people increased their loneliness. Hamburger and Ben-Artzi7 found that internet addiction did not increase the level of loneliness, and that internet addiction emerged as a result of loneliness. Cui and Chi39 revealed that the rate of internet addiction was high in students with low perceived social support and social support level, and low social support was among the risk factors for internet addiction. In addition to studies showing a negative relationship between perceived social support and internet addiction, there are also studies indicating that the internet improves social networking and increases social interaction and support40,41. Our study also indicates that there is a negative relationship between perceived social support and internet addiction among university students.

Study Limitations

The limitation of this study is that the sample was not screened for psychiatric symptomatology. Having a diagnosis of any mental illness was determined as an exclusion criterion. The results of the research are limited to the measurement tools used.

TARTIŞMA

Çalışmamızın sonuçları üniversite öğrencilerinde internet bağımlılık düzeyi ile yaş ve medeni durum arasında anlamlı bir farklılık olduğuna, algılanan sosyal destek düzeyi arttıkça internet bağımlılığı düzeyinin düştüğüne işaret etmektedir. Literatürde biyolojik cinsiyetler arası internet kullanım sıklığı ve kullanım amaçlarına dair farklılıklara değinen pek çok çalışma bulunmaktadır18. Çalışmamızın bulgularına göre cinsiyet internet bağımlılığını ve algılanan sosyal destek düzeyini etkilememektedir. Ancak Kıran Esen ve Gündoğdu’nun19 yaptığı araştırmada internet bağımlılığı puanlarının cinsiyete göre değiştiği, kadınların internet bağımlılığı puanlarının erkeklerden daha düşük olduğu tespit edilmiştir. Esen ve Siyez20 cinsiyetin, akademik başarı, yalnızlık ve aileden algılanan sosyal destek değişkenlerinin ergenlerde internet bağımlılığını yordadığını belirtmektedir. Literatürdeki çalışmalardan bazılarının araştırmada elde edilen sonuca paralel şekilde erkeklerin kadınlara göre daha çok internet bağımlısı olduğu saptanırken21; bazılarının internet bağımlılığının cinsiyete göre anlamlı bir fark göstermediği saptanmıştır22. Karasu ve ark.’nın23 üniversite öğrencilerinin internet bağımlılığı ile sosyal destekleri arasındaki ilişkinin incelenmesi amacı ile yaptıkları araştırmada da öğrencilerin cinsiyet durumu ile internet bağımlılığı puan ortalamaları arasında istatistiksel açıdan anlamlı bir farklılık saptanmıştır. Erkek öğrencilerin internet bağımlılığı puan ortalamaları, kız öğrencilerden istatistiksel olarak anlamlı bulunmuştur. Var olan araştırmalardaki birbirinden farklı sonuçların internet bağımlılığı ölçüm biçiminden ve/veya kültürel farklılıklar gibi değişkenlerden kaynaklandığı düşünülebilir.

Çalışmamızın sonuçlarına göre internet bağımlılık düzeyi yaşa göre değişmektedir. Yaş arttıkça internet bağımlılık düzeyi azalmaktadır. Araştırmacıların internet kullanıcılarının büyük çoğunluğunun özellikle 18-24 yaş aralığındaki genç yetişkinlerden oluştuğunu vurguladıkları görülmektedir. Üniversite öğrencilerinin de büyük çoğunluğunun bu yaş aralığında yer aldığını belirtmek gerekir24,25. Litwin and Landau26 tarafından yapılan araştırmada, yaş ilerledikçe arkadaş ilişkilerinin azaldığı, eğitim düzeyi düştükçe aile ağlarının arttığı, eğitim düzeyi yükseldikçe arkadaşlık ağlarının arttığı bulunmuştur. Bu konuda yapılan başka bir çalışmada yaş ile sosyal destek algısının istatistikî açıdan anlamlı farklılık gösterdiği, yaş ilerledikçe arkadaş desteğinin düştüğü, ergenlik döneminin başlarında ise en yüksek desteği aileden algıladıkları bulunmuştur27. Blasco ve ark.’nın28 yaptığı sistematik incelemenin sonuçları, yeni nesillerde internet bağımlılığının arttığına ve bunda bireyselliğin artması, sosyalleşmenin ve kültürlenmenin azalmasının rol oynadığına işaret etmektedir.

Çalışmamızda medeni durum ile internet bağımlılık düzeyi arasında anlamlı bir farklılık olduğu tespit edilmiştir. Bekar bireylerin evli bireylerden daha yüksek düzeyde internet bağımlısı olduğu saptanmıştır. Jovic ve ark.’nın29 araştırmasında evli olan veya nikahsız yaşayan bireylerle bir partneri olmayanların interneti kullanım süresi ve amaçları açısından fark gösterdikleri saptanmıştır. Partneriyle birlikte yaşayan bireylerin interneti daha çok resim ve müzik taramanın yanı sıra oyun oynamak gibi boş zaman etkinlikleri için kullandıkları belirtilmiştir. Bekar katılımcıların ise internette 8 saatten fazla zaman geçirdikleri saptanırken bağımlılık yaratan faaliyetlere (oyun oynama) daha yatkın olanların partnerleriyle yaşayanlar olduğu belirtilmiştir. Karasu ve ark.’nın23 araştırmasında bölüm, sınıf, yaş, aile tipi, medeni durum, kaldığı yer, anne eğitimi, baba eğitimi, baba mesleği, anne mesleği ve ailenin gelir durumu ile internet bağımlılığı puan ortalamaları arasında istatistiksel açıdan anlamlı bir farklılık saptanmamıştır. Sancar’ın30 kadınlarda internet bağımlılığı ile ilgili yaptığı bir araştırmada en sık internet kullanımının sözlü/nişanlı kadınlar arasında olduğu tespit edilmiştir. Sözlü/nişanlıların %93’ünün her gün internete girdiği belirtilmiştir. İkinci sıklıkta internet kullanan grup ise evli kadınlardır. Dul/boşanmış kadınların da %82 gibi yüksek bir oranda her gün internet erişiminde bulundukları gözlenmektedir. Daha seyrek kullanımların tüm gruplarda oldukça düşük olduğu görülmektedir. Medeni duruma göre internet bağımlılık düzeyleri arasındaki ilişkiyi gösteren çalışmaların birbirinden farklı sonuçları evlilikte doyum gibi aracı faktörler ya da kültürler arası farklılıklardan kaynaklanıyor olabilir.

Çalışmamızın sonuçlarına göre üniversite öğrencilerinde algılanan sosyal destek düzeyinin artması internet bağımlılık düzeyini azaltmaktadır. İnternet üzerinde gittikçe artan sayılarda destek gruplarının oluşturulduğu bilinmektedir. Bununla birlikte sosyal paylaşım ağlarının sosyal destek algısı yaratmada önemli bir rol oynadığı görülmektedir31. Joinson32 (1999)’da benzer olarak internetin ergenlere yeni sosyal ilişkiler kurma fırsatı tanıdığı ve aile içindeki ilişkilerde yaşanan sorunları çözebilecek uygun baş etme yöntemlerini geliştiremeyen ergenlerin yakın ilişkiler kurma ihtiyaçları için internete yöneldiğini belirtmiştir. Diğer bir araştırmada akran baskı düzeyleri düştükçe ergenlerin internete olan bağımlılık düzeylerinin de azaldığı görülmüştür21. Bununla beraber aile ve öğretmen desteği arttıkça internet bağımlılığı puanlarının düştüğü de gözlenmiştir. Gunuc ve Dogan’ın33 ergenler üzerinde yürüttükleri çalışmalarında anneleriyle vakit geçiren ergenlerin algıladıkları sosyal desteğin daha yüksek, internet bağımlılığının daha düşük olduğu görülmüştür. Karaer ve Akdemir34 benzer şekilde ergenlerde internet bağımlılığının önlenmesi ve tedavisinde ebeveynlik, sosyal destek ve duygu düzenlemenin iyileştirilmesinin önemini vurgulamışlardır. Benzer şekilde Naseri ve ark.35 benlik saygısı düşük olan üniversite öğrencilerinin internet bağımlılığına karşı daha savunmasız olduğunu belirtmişlerdir.

Gittikçe artarak yaygınlaşan internet kullanımı ile beraber sanal iletişim ortamının daha az riskli ve daha kolay sosyal ilişkilerin kurulduğu bir ortam olarak algılandığını söylemek mümkündür36. Bu durum da interneti, bireylerin başkalarından kolayca destek bulabildiği kaynaklardan birine dönüştürmektedir. İnternetin günlük hayatın her alanına girmesi ve neredeyse gerçek ve sanal dünyanın birbiri ile yarıştığı bir dönemde bireylerin yüz yüze ilişkilerini öteleyebildiği ve interneti sosyal destek sağladıkları kaynakların arasında ilk sıralara koyabildiği görülmektedir37. İnternet aracılığı ile sağlandığı görülen sanal sosyal desteğin gerçek hayatta kalıcı ilişkilere dönüşememe durumu da sosyal sorunlara neden olurken, sosyal ilişkilerde yaşanılan doyumsuzluk sanal dünyaya yönelmeyi artırıp bir kısır döngü yaratabilmektedir38. Chou ve Hsiao’nun6 yapmış oldukları çalışmada internet kullanımındaki artışın gerçek sosyal ilişkilere ayrılan zamanı ve yüz yüze ilişkileri azalttığı, sosyal izolasyona sebep olduğu; bu tür insanların yalnızlıklarının arttığını bulunmuştur. Hamburger ve Ben-Artzi7 ise internet bağımlılığının yalnızlık düzeyini artırmadığını, yalnızlık sonucunda internet bağımlılığının ortaya çıktığını bulmuşlardır. Cui ve Chi39 algılanan sosyal destek ve sosyal destek düzeyi düşük öğrencilerde internet bağımlılığı görülme oranının yüksek olduğunu ve düşük sosyal desteğin internet bağımlılığı için risk faktörleri arasında yer aldığını ortaya koymuşlardır. Yapılan araştırmalarda algılanan sosyal destekle internet bağımlılığı arasında negatif yönde ilişki olduğunu gösteren çalışmalarla birlikte internetin sosyal ilişki ağlarını geliştirip sosyal etkileşim ve desteği artırdığını belirten araştırmalar da yer almaktadır40,41. Bizim çalışmamız da üniversite öğrencilerinde algılanan sosyal destekle internet bağımlılığının arasında negatif yönde ilişki olduğuna işaret etmektedir.

Çalışmanın Kısıtlılıkları

Bu araştırmada örneklemin psikiyatrik semptomatoloji açısından taranmamış olması bir sınırlılıktır. Ruhsal herhangi bir hastalık tanısı bulunmak dışlama kriteri olarak belirlenmiştir. Araştırmanın sonuçları kullanılan ölçüm araçları ile sınırlıdır.

CONCLUSION

The results of our study indicate that as the perceived social support level of university students increases, the level of internet addiction decreases. Studies are needed to determine the mediating factors between perceived social support and internet addiction.

Ethics

Ethics Committee Approval: Ethical approval was received from the Social and Human Sciences Ethics Committee of Nişantaşı University (no: 021/2017, date: 11.01.2017).
Informed Consent: The study was conducted in compliance with the principles of Declaration Helsinki. Informed consent was obtained from all individual participants included in the study.
Peer-review: Externally peer-reviewed.

Authorship Contributions

Concept - Design - Data Collection or Processing - Analysis or Interpretation - Literature Search - Writing: M.M., S.Ç.
Conflict of Interest: No conflict of interest was declared by the authors.
Financial Disclosure: The authors declared that this study received no financial support.

References

1
Goldberg I. (1996). Goldberg’s message. Web üzerinde 10.05.2011. Erişim adresi: http://wwwusr.rider.edu/~suler/psycyber/supportgp.html
2
Shapira NA, Lessig MC, Goldsmith TD, Szabo ST, Lazoritz M, et al. Problematic internet use: proposed classification and diagnostic criteria. Depress Anxiety. 2003;17:207-16.
3
Holden C. ‘Behavioral’ addictions: do they exist? Science. 2001;294:980-2.
4
Baloğlu M, Şahinr, Arpaci I. A review of recent research in problematic internet use: gender and cultural differences. Curr Opin Psychol. 2020;36:124-9.
5
Gürcan N, Hamarta E: Problemli internet kullanımı ve uyum. İçinde: Kalkan M, Kaygusuz C (eds), İnternet bağımlılığı, Ankara: Anı Yayıncılık, 2013;95-114.
6
Chou C, Hsiao MC. Internet Addiction, Usage, Gratification, and Pleasure Experience: The Taiwan College Students’ Case. Comput Educ. 2000;35:65-80.
7
Hamburger YA, Ben-Artzi E. Loneliness and Internet use. Comput Hum Behav. 2003;19:71-80.
8
Çakır Y, Palabıyıkoğlu R. Gençlerde Sosyal Destek-Çok Boyutlu Algılanan Sosyal Destek Ölçeğinin Güvenirlik ve Geçerlik Çalışması. Kriz Dergisi. 1997;5:25-32.
9
Durak Batıgün A, Kılıç N. İnternet Bağımlılığı İle Kişilik Özellikleri, Sosyal Destek, Psikolojik Belirtiler ve Bazı Sosyo-Demografik Değişkenler Arasındaki İlişkiler. Türk Psikoloji Dergisi. 2011;26:1-10.
10
Tanrıverdi K. Ortaöğretim Öğrencilerinde İnternet Bağımlılığı İle Algılanan Sosyal Destek Arasındaki İlişkinin İncelenmesi, Yüzüncü Yıl Üniversitesi, Yüksek Lisans Tezi. 2012; Van.
11
Young KS. Internet addiction: the emergence of a new clinical disorder. Cyber Psychol Behav. 1998;1:23744.
12
Kraut R, Patterson M, Lundmark V, Kiesler S, Mukopadhyay T, Scherlis W. A Social Technology That Reduces Social Involvement and Psychological Well-Being? American Psychological Association. 2010;9:1017-31.
13
Caplan SE. Relations among loneliness, social anxiety, and problematic Internet use. Cyberpsychol Behav. 2007;10:234-42.
14
Sanders CE, Field TM, Diego M, Kaplan M. The relationship of Internet use to depression and social isolation among adolescents. Adolescence. 2000;35:237-42.
15
Esen E. Ergenlerde İnternet Bağımlılığını Yordayan Psiko-Sosyal Değişkenlerin İncelenmesi, Dokuz Eylül Üniversitesi, Yüksek Lisans Tezi. 2010; İzmir.
16
Bayraktar F. İnternet Kullanımının Ergen Gelişimindeki Rolü. Ege Üniversitesi Sosyal Bilimler Enstitüsü, Yüksek Lisans Tezi. 2001; İzmir.
17
Zimet GD, Dahlem NW, Zimet SG, Farley GK. The Multidimensional Scale of Perceived Social Support. J Pers Assess. 1988;52:30-41.
18
Li Q, Dai W, Zhong Y, Wang L, Dai B, Liu X. The Mediating Role of Coping Styles on Impulsivity, Behavioral Inhibition/Approach System, and Internet Addiction in Adolescents From a Gender Perspective. Front Psychol. 2019;10:2402.
19
Kıran Esen B, Gündoğdu M. The Relationship Between Internet Addiction, Peer Pressure and Perceived Social Support Among Adolescents. Int J Educ Res. 2010;2:29-36.
20
Esen E, Siyez DM. Ergenlerde İnternet Bağımlılığını Yordayan Psiko Sosyal Değişkenlerin İncelenmesi. Türk Psikolojik Danışma ve Rehberlik Dergisi. 2011;4:127-38.
21
Balta Çakır Ö, Horzum B. The Factors that Affect Internet Addiction of Students in a Web Based Learning Environment. Ankara University Journal of Faculty of Educational Sciences. 2008;41:187-205.
22
Bayraktar F, Gün Z. Incidence And Correlates of İnternet Usage Among Adolescents in North Cyprus. Cyberpsychol Behav. 2007;10:191-7.
23
Karasu F, Bayır B, Çam H. Üniversite Öğrencilerinin İnternet Bağımlılığı İle Sosyal Destek Arasındaki İlişkinin İncelenmesi. Sosyal Bilimler Dergisi. 2017;7:374-87.
24
Cheung CM, Chiu PY, Lee MK. Online Social Networks: Why Do Students Use Facebook? Comput Hum Beha. 2011;27:1337-43.
25
Rennie F, Mason R: E-Learning And Social Networking Handbook: Resources for Higher Education. NY, New York: Routledge, 2008.
26
Litwin H, Landau R. Social network type and social support among the old-old. J Aging Stud. 2000;14:213-28.
27
Güzel H. Psikiyatrik Yardım Alan Ergenlerin Sosyal Destek Algıları ve Bunu Etkileyen Etmenler. Hacettepe Üniversitesi, Yüksek Lisans Tezi. 2005; Ankara.
28
Blasco RL, Robres AQ, Sánchez AS. Internet addiction in young adults: A meta-analysis and systematic review. Comput Hum Behav. 2022;130:107201.
29
Jovic J, Pantovic-Stefanovic M, Mitkovic-Voncina M, Dunjic-Kostic B, Mihajlovic G, Milovanovic S, et al. Internet use during coronavirus disease of 2019 pandemic: Psychiatric history and sociodemographics as predictors. Indian J Psychiatry. 2020;62(Suppl 3):383-90.
30
Sancar E. Kadınlarda İnternet Bağımlılığı ile İlgili Bir Araştırma: İstanbul Örneği. Iğdır Üniv Sos Bil Der. 2017;13:296-320.
31
Şahin Baltacı H, İşleyen F, Özdemir S. Eğitim Fakültesi Öğrencilerinin Romantik İlişki Durumları ve Sosyal Ağ Kullanımlarına Göre Etkileşim Kaygısı ve Sosyal Destek Algılarının İncelenmesi. Mersin Üniversitesi Eğitim Fakültesi Dergisi. 2012;8:25-36.
32
Joinson A. Social desirability, anonymity, and internet-based questionnaires. Behav Res Methods Instrum Comput. 1999;31:433-8.
33
Gunuc S, Dogan A. The relationships between Turkish adolescents’ Internet addiction, their perceived social support and family activities. Comput Hum Behav. 2013;29:2197-207.
34
Karaer Y, Akdemir D. Parenting styles, perceived social support and emotion regulation in adolescents with internet addiction. Compr Psychiatry. 2019;92:22-7.
35
Naseri L, Mohamadi J, Sayehmiri K, Azizpoor Y. Perceived Social Support, Self-Esteem, and Internet Addiction Among Students of Al-Zahra University, Tehran, Iran. Iran J Psychiatry Behav Sci. 2015;9:e421.
36
Zorbaz O. Lise öğrencilerinin problemli internet kullanımının sosyal kaygı ve akran ilişkileri açısından incelenmesi. Hacettepe Üniversitesi, Yüksek Lisans Tezi. 2013; Ankara. Erişim Adresi: http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/1763
37
Caplan SE. Problematic Internet Use and Psychosocial Well-Being: Development of a Theory-Based Cognitive-Behavioral Measurement Instrument. Comput Hum Behav. 2002;18:553-75.
38
Ceyhan AA. University Students’ Problematic Internet Use and Communication Skills According to Internet Use Purposes. Educ Sci. 2011;11:69-77.
39
Cui X, Chi X. The Relationship Between Social Support and Internet Addiction Among Chinese Adolescents During the COVID-19 Pandemic: A Multiple Mediation Model of Resilience and Post-Traumatic Stress Disorder Symptoms. Psychol Res Behav Manag. 2021;14:1665-74.
40
Özcan NK, Buzlu S. İnternette Bilişsel Durum Ölçeğinin geçerlik ve güvenirliği. Bağımlılık Dergisi. 2005;6:19-26.
41
Valkenburg P, Peter J. Preadolescents’ and Adolescents’ Online Communication and Their Closeness to Friends. Dev Psychol. 2007;43:267-77.