Morphometric Analysis of Celiac Mesenteric Trunk in Computed Tomography Images and a Review of the Literature
PDF
Cite
Share
Request
Original Article
VOLUME: 9 ISSUE: 1
P: 72 - 79
April 2021

Morphometric Analysis of Celiac Mesenteric Trunk in Computed Tomography Images and a Review of the Literature

Namik Kemal Med J 2021;9(1):72-79
1. Tekirdağ Namık Kemal University Faculty of Medicine, Department of Radiology, Tekirdağ, Turkey
No information available.
No information available
Received Date: 04.09.2020
Accepted Date: 18.01.2021
Publish Date: 26.03.2021
PDF
Cite
Share
Request

ABSTRACT

Aim:

Evaluation of the frequency of variation and morphometric findings of the rare Celiac mesenteric trunk (CMT) in Tekirdağ province using computed tomography (CT) images.

Materials and Methods:

A study population containing 1,919 patients (1,313 males, 606 females; mean age 60.47±14.88 years) with any indication of CT angiographic examination was reviewed retrospectively. The length, diameter, vertical and horizontal angles and orientations (upward, downward, right-sided, left-sided), the level of origin from abdominal aorta and their types were analyzed.

Results:

Twenty-three (1.19%) CMT patients were detected. In vertical angle evaluation 20 (87%) cases had downward and three (13%) had upward orientations. In horizontal angle assessment 11 (47.8%) cases had right-sided and 12 (52.2%) had left-sided orientations. 60% of type 1 CMT cases had right-sided orientation, while 75% of type 2 cases had left-sided orientation and in both of types, the majority part had downward orientation. Fifteen (65.22%) cases were type 1 and 8 (34.78%) cases were type 2. There was a negative weak correlation between the length and diameter of CMT (p=0.048, r=-0.417). The most common level of origin of CMT was in L1-L2 level (30.4%). The most common level in type 1 was L1-L2 (40%, n=6), while L1 and L1-inferior-end-plate with the same distribution were in type 2 (37.5%).

Conclusion:

In CMT, especially in terms of prior to surgical planning and arterial interventional procedures morphometric assessment is highly important. In this study, CMTs were found to be mostly type 1, as well as downward (17 degrees±14.28) and left-sided (73 degrees±6.88) orientation.

Keywords:
Celiac artery, mesentery, computed tomography

INTRODUCTION

Celiac trunk (CTR) is the major ventral vessel arising from the abdominal aorta (AA) at the level of T12, gives branches including the left gastric artery (LGA), common hepatic artery (CHA) and splenic artery. CTR with the superior mesentery artery (SMA) supplies the majority part of gastrointestinal tract and abdominal viscera1-3. SMA is the second major ventral branch of AA arising at the level of L1 and running down in front of the third part of the duodenum, and it supplies the small intestine.

Many variation forms of these arteries have been reported in several studies4-7. The Celiac mesenteric trunk (CMT), which comprises CTR and SMA, is the rarest arterial variation with the reported prevalence of 0.46-3.06%7-12. Determination and demonstration of these variations is highly important to detect the underlying pathology of CMT such as thrombosis-occlusion13,14 or stenosis13,15,16 and to prevent any undesirable complications and fatal outcomes prior to surgical and interventional vascular procedures17-19. Cross-sectional modalities such as computed tomography (CT) play an essential role in the diagnosis. CT is easy to apply, rapid, non-invasive imaging method with an excellent spatial and temporal resolution.

The aim of this study is to define the morphometric results of the rare CMT variation using CT images in the light of the literature.

GİRİŞ

Çölyak trunkus (CTR), T12 seviyesinde abdominal aorttan (AA) çıkan ana ventral arter olup, sol gastrik arter (LGA), ortak hepatik arter ve splenik arteri içeren dallar verir. Superior mezenter arter (SMA) ile CTR, gastrointestinal sistemin ve abdominal iç organların büyük kısmını besler1-3. SMA, AA’nın L1 seviyesinde ortaya çıkan ve duodenumun üçüncü kısmının önünde aşağıya inen ikinci büyük ventral dalıdır ve ince barsağı besler.

Bu arterlerin birçok varyasyon formu çeşitli çalışmalarda bildirilmiştir4-7. CTR ve SMA’yı içeren Çölyak mezenterik arter (CMT), bildirilen %0,46-3,067-12 prevalansı ile en nadir arteriyel varyasyondur. Bu varyasyonların belirlenmesi ve gösterilmesi, CMT’nin tromboz-oklüzyon13,14 veya stenoz13,15,16 gibi altta yatan patolojisini saptamak ve cerrahi ve girişimsel vasküler prosedürler öncesi istenmeyen komplikasyonları ve ölümcül sonuçları önlemek için oldukça önemlidir17-19. Bilgisayarlı tomografi (BT) gibi kesitsel yöntemler tanıda önemli bir rol oynar. BT, mükemmel bir uzaysal ve zamansal çözünürlüğe sahip, uygulanması kolay, hızlı, invazif olmayan görüntüleme yöntemidir.

Bu çalışmanın amacı, nadir görülen CMT varyasyonunun morfometrik sonuçlarını BT görüntüleri kullanarak literatür ışığında tanımlamaktır.

MATERIALS AND METHODS

Study Population

Between February 27, 2017 and March 20, 2020, data of 4,024 patients with any indication and having CT angiographic examinations were scanned from hospital Picture Archive and Communication System by an eight-year experienced radiologist. From this population, 1,919 patients (1,313 males, 606 females; minimum age=18-year-old, maximum=103-year-old, mean age=60.47±14.88 years) with CT angiographic examinations including abdominal vascular structures (CTR, SMA and/or renal arteries) and those with best quality of diagnostic imaging were enrolled in the study and were reviewed retrospectively. CT examinations with poor image quality, non-abdominal CT examinations or those including pathologies affecting vascular structures (any intervention/surgery, stenosis, aneurysm, tumour) were excluded from the study.

A summary of the electronic search in the databases and algorithm of inclusion are shown in Figure 1.

Ethical Statement

This study was approved by the university/local human research ethics committee and all procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Tekirdağ Namık Kemal University Local Ethical Committee of the institution approved the study protocol (approval number: 2020.39.02.13)

Data Acquisition

CT acquisitions were performed on 128 row multi-detector CT device (Aquilion™ Prime, Canon Medical Systems).

Scanning Protocol

CT scanning parameters were as follows for each protocol: 100-250 mAs modulated by personal body mass index dose; 100-140 kV tube voltage, 0.5 mm x 80 collimation, 0.35 second gantry rotation time, 0.813 pitch factor, slice thickness 1 mm and slice interval 0.8 mm. For intravenous bolus injection of non-ionic contrast material (350 mg/100 mL, iohexol, Omnipaque®; GE Healthcare, Cork, Ireland), a mechanical injector was used at a flow rate of 4.5-5.0 mL/sec.

CT Image Assessment

An eight-year experienced radiologist retrospectively analysed the CT images and assessed all of the morphometric measurements (diameter, length, angle and orientation classification of CMTs).

CMT Morphologic Analysis

The length, diameter, and vertical and horizontal angles as well as vertical orientation (upward, downward) and horizontal orientation (right or left-sided) were analysed morphologically. The length of CMT was measured from the trunk’s outlet till branching level. Vertical and horizontal angles were measured as the angle between the artery outside border and the horizontal plane line (angle of emergence). CMTs were categorized depending on their locations, orientation and the level of origin from the AA. The diameters of CMTs were measured both on sagittal and coronal planes craniocaudally (Figure 2).

In addition, type classification of CMT cases was evaluated according to the classification by Tang et al.11. CMT was classified into five types:

Type 1: Hepato-gastro-spleno-mesenteric trunk,

Type 2: Hepato-spleno-mesenteric trunk with the LGA arising from the AA,

Type 3: Gastro-spleno-mesenteric trunk with the CHA arising from the AA,

Type 4: Hepato-gastro-mesenteric trunk with the splenic artery arising from the AA,

Type 5: Any other variation that meets the above definition of the CMT (LGA originating from other arteries except the AA, CTR and single common trunk; the CHA arising from the SMA).

Statistical Analysis

Statistical package program (SPSS version 17, Chicago, USA) was used in analysing data. The variables were investigated using visual (histograms, probability plots) and analytical methods to determine whether they were normally or not normally distributed. Investigating the associations between non-normally distributed and/or ordinal variables, the correlation coefficients and their significance were calculated using the Pearson test. Descriptive statistics were used in data analysis. A 5% type 1 error level was used to infer statistical significance.

GEREÇ VE YÖNTEMLER

Çalışma Popülasyonu

27 Şubat 2017 ile 20 Mart 2020 tarihleri arasında, herhangi bir endikasyona sahip ve BT anjiyografik tetkikleri olan 4.024 hastanın verileri, sekiz yıllık deneyimli bir radyolog tarafından hastane Görüntü Arşivleme ve İletişim Sistemi (PACS) tarandı. Bu popülasyondan, abdominal vasküler yapıları (CTR, SMA ve/veya renal arterler) kapsayan ve en iyi tanısal görüntüleme kalitesine sahip BT anjiyografik incelemeleri olan 1.919 hasta (1.313 erkek, 606 kadın; minimum yaş=18 yaşında, maksimum=103 yaşında, ortalama yaş=60,47±14,88 yıl) çalışmaya alındı ve geriye dönük olarak incelendi. Görüntü kalitesi düşük BT incelemeleri, karın dışı BT incelemeleri veya vasküler yapıları etkileyen patolojileri içerenler (herhangi bir girişim/cerrahi, darlık, anevrizma, tümör) çalışma dışı bırakıldı.

Veritabanlarındaki elektronik araştırmanın bir özeti ve dahil etme algoritması Şekil 1’de gösterilmektedir.

Bu çalışma, üniversite/yerel insan araştırmaları etik komitesi tarafından onaylanmıştır ve insan katılımcıları içeren çalışmalarda gerçekleştirilen tüm prosedürler, kurumsal ve/veya ulusal araştırma komitesinin etik standartlarına ve 1964 Helsinki Deklarasyonu ve daha sonraki değişiklikleri veya karşılaştırılabilir etik standartlara uygundur.

Tekirdağ Namık Kemal Üniversitesi Yerel Etik Komitesi çalışma protokolünü onayladı (onay no: 2020.39.02.13)

Veri Toplama

BT incelemeleri 128 row multi-detector CT cihaz (Aquilion™ Prime, Canon Medical Systems) ile yapıldı.

Tarama Protokolü

BT tarama parametreleri her protokol için şu şekildeydi: 100-250 mAs kişisel vücut kitle indeksi dozu ile module; 100-140 kV tüp voltaj, 0,5 mm x 80 kolimasyon, 0,35 saniye gantry rotasyon zamanı, 0.813 pitch faktör, kesit kalınlığı 1 mm ve kesit aralığı 0,8 mm. Non-iyonik kontrast maddenin intravenöz bolus enjeksiyonu için (350 mg/100 mL, iohexol, Omnipaque®; GE Healthcare, Cork, Ireland), 4,5-5,0 mL/sn akış hızında mekanik enjektör kullanıldı.

BT Görüntü Değerlendirmesi

Sekiz yıllık deneyimli bir radyolog geriye dönük olarak BT görüntülerini analiz etti ve tüm morfometrik ölçümleri (CMT’lerin çap, uzunluk, açı ve oryantasyon sınıflandırmasını) değerlendirdi.

CMT Morfolojik Analiz

Uzunluk, çap ve dikey ve yatay açıların yanı sıra dikey oryantasyon (yukarı, aşağı doğru) ve yatay oryantasyon (sağ veya sol taraf) morfolojik olarak analiz edildi. CMT’nin uzunluğu gövde çıkışından dallanma seviyesine kadar ölçüldü. Dikey ve yatay açılar, arter dış sınır ile yatay düzlem çizgisi (çıkış açısı) arasındaki açı olarak ölçüldü. CMT’ler, AA’dan konumlarına, oryantasyonlarına ve orijin seviyesine bağlı olarak kategorize edildi. CMT’lerin çapları hem sagital hem de koronal planda kranyokaudal olarak ölçüldü (Şekil 2).

Ayrıca CMT olgularının tip sınıflandırması Tang ve ark.’nın11 sınıflandırmasına göre değerlendirildi. CMT beş türe ayrıldı:

Tip 1: Hepato-gastro-spleno-mezenterik gövde,

Tip 2: AA’dan çıkan LGA ile hepato-spleno-mezenterik gövde,

Tip 3: AA’dan çıkan ana hepatik arter (CHA) ile gastro-spleno-mezenterik gövde,

Tip 4: AA’dan çıkan splenik arter ile hepato-gastro-mezenterik gövde,

Tip 5: CMT’nin yukarıdaki tanımını karşılayan diğer tüm varyasyonlar (AA, CTR ve tek ana gövde hariç diğer arterlerden çıkan LGA; SMA’dan çıkan CHA).

İstatistiksel Analiz

Verilerin analizinde istatistiksel paket programı (SPSS version 17, Chicago, USA) kullanıldı. Normal olarak dağılmış olup olmadıklarını belirlemek için değişkenler görsel (histogramlar, olasılık grafikleri) ve analitik yöntemler kullanılarak incelenmiştir. Normal dağılmayan ve/veya sıralı değişkenler arasındaki ilişkiler araştırılarak korelasyon katsayıları ve bunların anlamlılığı Pearson testi kullanılarak hesaplandı. Veri analizinde tanımlayıcı istatistikler kullanılmıştır. İstatistiksel anlamlılık sonucunu çıkarmak için %5 tip 1 hata seviyesi kullanıldı.

RESULTS

CMT Cases

Among the patient population having CT angiographic examinations (n=1919), 23 (1.19%) cases were detected to be CMT. Of 23 cases, 20 (87%) were male and three (13%) were female, with the mean age of 57.4±16.62 years (range: 18-83 years).

Morphometric Analysis

The mean length of the CMT was 25.35±9.13 (range: 7.6-38 mm), the mean diameter of CMT was 12.06±2.12 mm (range: 8.5-15.6 mm), the mean vertical and horizontal angles were 18.48±14.16 degrees (range: 0.8-51.3 degrees) and 73.65±10.74 degrees (range: 54-103.4 degrees), respectively.

A negative weak correlation was found between the length and diameter of CMT (p=0.048, r=-0.417) (Figure 3).

In vertical angle assessment of 23 patients, 20 patients (20/23; 87%) had a CMT with a downward orientation and three patients (3/23; 13%) with an upward orientation. Eleven (11/23; 47.8%) of the patients had a CMT with right-sided and 12 (12/23; 52.2%) with a left-sided orientation in horizontal angle assessment.

The mean vertical angle with downward and upward orientations were found as 17±14.28 degrees and 28.56±9.61 degrees, respectively. The mean horizontal angle with right-sided and left-sided orientations were found as 74.44±14.16 degrees and 73±6.88 degrees, respectively.

In CMT population, 15 (65.22%) patients were detected to be type 1 and 8 (34.78%) patients were type 2, respectively (Figure 4). Although there was male preponderance in both of types, type 1 was the most common type in the male population (n=14, 93.3%), while type 2 was the most common in the females (n=2, 25%). Sixty percent (n=9) of type 1 CMT patients tended to have right-sided orientation, while 75% of type 2 CMT patients (n=6) had a tendency of left-sided orientation. In both of types, the majority parts of CMT population (type 1: n=13, 87.6%; type 2: n=7, 87.5%) showed to have downward orientation (Table 1).

The distribution of CMT origin levels was most common in L1-L2 (30.4%, n=7), followed by L1 (26.1%, n=6) and with the same number of patients in T12-L1 and L1- inferior-end-plate level (21.7%, n=5), respectively. The level of origin in type 1 was detected to be most common in L1-L2 level (40%, n=6) and the level of origin in type 2 was mostly at both levels in the L1 and L1-inferior-end-plate (37.5%, n=3). Type 1 was the most dominant type (65.2%, n=6) among all of the levels (T12-L1, L1, L1-inferior- end-plate and L1-L2), while type 2 was dominant only in L1-inferior-end-plate level (60%, n=3). L1-L2 level was the most common level of origin in male population (35%, n=7), while L1 was the most common level in females (66.7%, n=2) (Table 2).

DISCUSSION

In the literature, some studies reported the variations of CTR and CMT with different range of incidence7-12 and quantitative measurements (length, diameter, type and level of origin, angle)8,11,19-22. In the current study, unlike the literature, both vertical and horizontal orientations, angles of CMTs and their relationship with their types have been analysed. In the present study, the incidence of CMT was found to be 1.2% in Tekirdağ province and more attention should be paid to CMT vascular evaluation. It is more common for CMT variation to be longest type, type 1, L1 output-level and downward orientation, and these parameters should be considered in vascular surgery or interventional procedures to be performed in the population in this region.

During embryonic period, the 10th to 13th vitelline arteries communicate between the aorta and a primitive ventral anastomotic artery. The regression of the ventral anastomosis and vitelline arteries (11th and 12th) and the persistence of the 10th and 13th roots provide giving origin to the CTR and the SMA. When the 10th to 12th vitelline arteries regress and a large portion of the ventral anastomosis persists (13th), CMT occurs (Figure 5)23.

There are some classifications about CTR variations available in the literature. Lipshutz24 suggested a classification of CTR into four types in 1917, and Adachi et al.25 classified more detailed anatomical variation of CTR and SMA in six types in 1928. Followed by Morita26, Michels27 and Uflacker28 presented their classifications. In the recent work by Tang et al.11, they have focused on the classification of CMT variation. In the current study, CMT type 1 according to Tang classification is compatible with Adachi type 4, and Tang type 2 is compatible with Adachi type 3.

Although gender and race had an effect on the presence or absence of variations in CTR5, most studies5,29,30 revealed that it had only relationship with ethnicity and origin of the study population, not with gender. According to the literature, Japanese, Caucasian, Korean, Indian and black-coloured populations have more variations of CTR, respectively5. On the other hand, in a meta-analysis including 36 studies (total subjects n=17,391) from fourteen countries and four continents, there was a preponderance of males (male/female ratio of 2.36:1). The pooled prevalence estimates of variant CTR with 95% confidence interval depending on the geographical region were mostly found in South America (0.3340) followed by Europe, West Asia, Africa and West Asia, respectively12. To date, the highest incidence of CMT has been reported as 3.06% in 171 CMT patients11. The incidence of CMT in the current study was detected to be 1.2%.

The length of CTR varies between 8 and 40 mm8. In the study by Tang et al.11, they divided 171 CMT patients into long-type (17-39 mm) and short-type (6-14 mm) CMT groups. The long type (61.99%) was more common than the short type. In the current study, CMT length was ranging from 7.6 mm to 38 mm; similarly, the longest type (n=18; mean value=29.4 mm±5.2, range: 19.2 mm-38 mm) was more common than the shortest-type (n=5; mean value=10.78 mm±2.19, range: 7.6 mm-11.8 mm).

In the study by Tang et al.11, the most common type was found to be type 1 that was accounting for 56.14%, followed by type 2 33.33%, type 3 2.34%, and type 4 1.75%. Similarly, in the current study, the most common type was type 1 (65.22%) followed by type 2 (34.78%).

The diameter of CTR has been reported to range from 6.61±1.67 mm to 8±0.9 mm in some studies in the literature19,20,22. In another study, the mean diameter of CTR was measured as 6.22 mm (ranging from 5.4 mm to 7.3 mm) and the mean diameter of CMT was 8.42 mm (ranging from 5.2 mm to 11.6 mm)10. In the study on 155 adult cadavers, it was found that the length of CTR increased quickly until the age of 20 years (in new-borns ranging from 3 mm to 8 mm; in adults ranging from 15 mm to 54 mm), while the diameter of CTR increased by the age (new-borns: 1.5-2.0 mm, adults: 3.1-4.3 mm). Also, she mentioned the measured diameter and the length of CTR in pyknics (obese or rounded body structure) were found to be larger (length: 12-29 mm), while in leptosomes (thin body structure), the diameter was smaller (3.1 mm), but the length was greater (39-54 mm)21. In the current study, the mean diameter of CMT was measured as 12.06±2.12 mm and a statistically weak negative correlation was found between the CMT length and diameter (p=0.048, r=-0.417), which means that CMT diameter increases as length decreases (Figure 3).

Although the CTR had various levels of origin ranging from the T11 to L1 vertebra, the most common level was found to be T12–L1 (45.83%) followed by T12 (29.17), L1 (22.92) and T11-T12 (2.08%), respectively1. Selvaraj and Sundaramurthi2 reported the similar findings of CTR origin levels that were T12-L1 (70.7%), L1 (18.6%) and T12 vertebra (10.7%), respectively. In the study by 10 CMT patients, the most common level of origin was found to be L1 (30%); T12-L1, L1 end-plate level, L1-L2 (20%) and T12 (10%), respectively10. The originating level of CTR in pyknics tended to be higher, while in leptosomes, it was lower [21]. In the current study, as shown in the Table 2, the most common level of CMT origin in type 1 was found to be L1-L2 (40%, n=6), followed by T12-L1 level (26.7%, n=4); and in type 2, it was in both L1 and L1-inferior-end-plate levels with the same counts (37.5%, n=3).

The angle between CTR and AA was studied in some literatures10,31. The angle of emergence of CTR was reported to be less than 90 degrees, ranging from 7 to 83 degrees. Before the first branch, there was an upward shift in 95% (n=306) and downward shift in 4.36% (n=14) of 321 patients. In one patient, CTR remained straight31. In another study in CMT patients, in the sagittal plane, the mean angle between the CMT and AA was measured as 26.65 degrees ranging from 13.5 to 38 degrees10. The angle of CTR in pyknics was greater measuring between 106 and 115 degrees; in contrast, it was smaller (<73 degree) in leptosomes21. In the current study, both vertical and horizontal angles were studied and found to be 18.48±14.16 degrees and 73.65±10.74 degrees, respectively. The majority part of the patients was constituted with those with downward orientation (87%, n=20) in vertical angle and had left-sided orientation in horizontal angle (52.2%, n=12) assessment. Both of the reports10,31 have studied only vertical angle between CMT and AA in which the values are in the similar ranges but none has studied the horizontal angle.

The direction of CTR is influenced by the origin of the hepatic artery and the topography of the pancreatic neck. If CTR is not the origin of the hepatic artery (gastrosplenic trunk), it is directed to the left side, attending as the splenic artery32. Although underdevelopment of rightward component is observed in new-borns, it is the hepatic artery that pulls CTR to the right-side33,34.

It is very important to know other underlying diseases or pathologies associated with CMT. Aneurysm15, stenosis16, thrombosis13,14, mesenteric ischemia13,16, arterial compression (egg. median arcuate ligament syndrome)15 and nutcracker syndrome35 can be associated with CMT which may have important results and may affect the survival specially in the occlusive diseases13. Here, CT plays an important role in the detection of variation. Also, as a new technique, cinematic rendering with random sampling computational algorithms and different light maps provides a realistic depiction of anatomical details from CT data36.

Study Limitations

The limitation of the study was that it was conducted with few patients (23 CMTs of 1919 patient population) having CT angiographic examinations. Although the incidence of variation is rare, the patient population participating in this study has the largest patient population included in the studies across the country. However, due to only three female patients, there was not a homogeneous sample group in this study. Due to the retrospective nature of the study, the patients could not be classified in their morphology as leptosomes or pyknics.

TARTIŞMA

Literatürde, bazı çalışmalar, farklı insidans aralığı7-12 ve kantitatif ölçümler (uzunluk, çap, tip ve başlangıç seviyesi, açı) ile CTR ve CMT varyasyonlarını bildirmiştir8,11,19-22. Mevcut çalışmada, literatürden farklı olarak, CMT’lerin hem dikey hem de yatay oryantasyonları, açıları ve tipleri ile ilişkileri incelenmiştir.

Bu çalışmada Tekirdağ ilinde CMT görülme sıklığı %1,2 olarak bulunmuştur ve CMT vasküler değerlendirmeye daha fazla dikkat edilmelidir. CMT varyasyonunun en uzun tip, tip 1, L1 çıkış seviyesi ve aşağı oryantasyon olması daha yaygındır ve bu bölgedeki popülasyonda yapılacak vasküler cerrahi veya girişimsel işlemlerde bu parametreler göz önünde bulundurulmalıdır.

Embriyonik dönemde, 10. ila 13. vitellin arterler, aort ile primitif ventral anastomotik arter arasında iletişim kurar. Ventral anastomoz ve vitellin arterlerin (11. ve 12.) gerilemesi ve 10. ve 13. köklerin kalıcılığı, CTR ve SMA’ya orijin verilmesini sağlar. 10. ila 12. vitellin arterler gerilediğinde ve ventral anastomozun büyük bir kısmı devam ettiğinde (13.), CMT oluşur (Şekil 5)23.

Literatürde CTR varyasyonları ile ilgili bazı sınıflandırmalar mevcuttur. Lipshutz24, 1917’de CTR’nin dört tipte sınıflandırılmasını önermiştir ve Adachi ve ark.25, 1928’de CTR ve SMA’nın daha ayrıntılı anatomik varyasyonunu altı tipte sınıflandırmıştır. Ardından Morita26, Michels27 ve Uflacker28 sınıflandırmalarını sundular. Tang ve ark.11, CMT varyasyonunun sınıflandırılmasına odaklanmışlardır. Mevcut çalışmada, Tang sınıflandırmasına göre CMT tip 1 Adachi tip 4 ile, Tang tip 2 ise Adachi tip 3 ile uyumludur.

Cinsiyet ve ırk, CTR’deki varyasyonların varlığı veya yokluğu üzerinde bir etkiye sahip olsa da5, çoğu çalışma5,29,30, cinsiyet ile değil de, çalışma popülasyonunun sadece etnik kökeniyle ve orijiniyle ilişkisinin olduğunu ortaya koydu.

Literatüre göre, Japon, Kafkasyalı, Koreli, Hintli ve siyah renkli popülasyonlar sırasıyla daha fazla CTR varyasyonuna sahiptir5. Öte yandan, on dört ülkeden ve dört kıtadan 36 çalışmayı (toplam denekler n=17,391) içeren bir meta-analizde, erkeklerin üstünlüğü vardı (erkek/kadın oranı 2,36:1). Coğrafi bölgeye bağlı olarak %95 güven aralığı ile varyant CTR’nin havuzlanmış prevalans tahminleri çoğunlukla Güney Amerika’da (0,3340) bulunmuş ve bunu sırasıyla Avrupa, Batı Asya, Afrika ve Batı Asya izlemektedir12. Bugüne kadar, en yüksek CMT insidansı 171 CMT hastasında %3,06 olarak bildirilmiştir11. Mevcut çalışmada CMT insidansı %1,2 olarak tespit edilmiştir.

CTR’nin uzunluğu 8 ile 40 mm arasında değişir8. Tang ve ark.’nın11 yaptığı çalışmada 171 CMT hastasını uzun tip (17-39 mm) ve kısa tip (6-14 mm) CMT gruplarına ayırmışlardır. Uzun tip (%61,99) kısa tipten daha yaygındı. Mevcut çalışmada CMT uzunluğu 7,6 mm ile 38 mm arasında değişiyordu; benzer şekilde, en uzun tip (n=18; ortalama değer=29,4 mm±5,2, aralık: 19,2 mm-38 mm) en kısa tipten (n=5; ortalama değer=10,78 mm±2,19, aralık: 7,6 mm-11,8 mm) daha yaygındı.

Tang ve ark.’nın11 yaptığı çalışmada, en yaygın tipin %56,14’ü oluşturan tip 1 olduğu, ardından %33,33 tip 2, %2,34 tip 3 ve %1,75 tip 4 olduğu bulunmuştur. Benzer şekilde bu çalışmada da en sık görülen tip 1 (% 65,22) ve ardından tip 2 (%34,78) idi.

Literatürdeki bazı çalışmalarda CTR çapının 6,61±1,67 mm ile 8±0,9 mm arasında değiştiği bildirilmiştir19,20,22. Başka bir çalışmada, ortalama CTR çapı 6,22 mm (5,4 mm ile 7,3 mm arasında) ve ortalama CMT çapı 8,42 mm (5,2 mm ile 11,6 mm arasında) olarak ölçülmüştür10. Yüz elli beş yetişkin kadavra üzerinde yapılan çalışmada, CTR uzunluğunun 20 yaşına kadar hızlı bir şekilde arttığı (yeni doğanlarda 3 mm’den 8 mm’ye, yetişkinlerde 15 mm’den 54 mm’ye kadar), CTR çapının ise yaşla arttığı bulunmuştur (yeni doğanlar: 1,5-2,0 mm, yetişkinler: 3,1-4,3 mm). Ayrıca, ölçülen CTR çap ve uzunluğunun piknik tiplerde (obez veya yuvarlak vücut yapısı) daha büyük (uzunluk: 12-29 mm) olduğu, leptozomlarda (ince vücut yapısı) ise çapın daha küçük (3,1 mm), ancak uzunluğun daha uzun (39-54 mm) olduğu bildirildi21. Bu çalışmada, CMT’nin ortalama çapı 12,06±2,12 mm olarak ölçülmüş ve CMT uzunluğu ile çapı arasında istatistiksel olarak zayıf bir negatif korelasyon bulunmuştur (p=0,048, r=-0,417), bu da CMT çapının uzunluk azaldıkça arttığı anlamına gelmektedir (Şekil 3).

CTR’nin T11’den L1 verebrasına kadar değişen çeşitli orijin seviyelerine sahip olmasına rağmen, en yaygın seviyenin sırasıyla T12-L1 (%45,83) ve ardından T12 (29,17), L1 (22,92) ve T11-T12 (%2,08) olduğu bulundu1. Selvaraj ve Sundaramurthi2 sırasıyla T12-L1 (%70,7), L1 (%18,6) ve T12 vertebra (%10,7) olan benzer CTR orijin düzeylerinin bulgularını bildirmişlerdir. On CMT hastasının katıldığı çalışmada en yaygın orijin seviyesi sırasıyla L1 (%30), T12-L1, L1 uç plaka seviyesi, L1-L2 (%20) ve T12 (%10) olarak bulunmuştur10. Piknik tiplerde başlangıç CTR seviyesi daha yüksek olma eğilimindeyken, leptozomlarda daha düşüktü21. Mevcut çalışmada, Tablo 2’de gösterildiği gibi, tip 1’de en yaygın CMT orijin düzeyinin L1-L2 (%40, n=6) ve ardından T12-L1 (%26,7, n=4) olduğu, tip 2’de ise hem L1 hem de L1-inferior-end-plate seviyelerinde aynı sayılarda (%37,5, n=3) olduğu gösterilmiştir.

CTR ve AA arasındaki açı bazı literatürlerde incelenmiştir10,31. CTR’nin ortaya çıkma açısının 90 dereceden az olduğu, 7 ile 83 derece arasında değiştiği bildirildi. İlk koldan önce, 321 hastanın %95’inde (n=306) yukarı, %4,36’sında (n=14) aşağı doğru kayma vardı. Bir hastada, CTR düz kaldı31. CMT hastalarında yapılan başka bir çalışmada, sagital planda CMT ile AA arasındaki ortalama açı 26,65 derece olarak ölçülmüştür ve 13,5 ile 38 derece arasında değişmektedir10. Piknik tiplerde CTR açısı 106 ile 115 derece arasında ölçüldüğünde daha büyüktü; tersine, leptozomlarda daha küçüktü (<73 derece)21. Bu çalışmada hem dikey hem de yatay açılar incelenmiş ve sırasıyla 18,48±14,16 derece ve 73,65±10,74 derece olarak bulunmuştur. Hastaların çoğunluğu dikey açı değerlendirmesinde aşağı doğru oryantasyon (%87, n=20) ve yatay açı (%52,2, n=12) değerlendirmesinde sola doğru oryantasyona sahipti. Her iki rapor da10,31 CMT ve AA arasındaki sadece dikey açıyı incelemiş ve değerleri benzer aralıklarda bulmuştur. Ancak hiçbirisi yatay açıyı incelememiştir.

CTR’nin yönü, hepatik arterin orijini ve pankreas boynunun topografyasından etkilenir. CTR, hepatik arterin (gastrosplenik gövde) orijini değilse, sol tarafa yönlenir ve splenik artere katılır32.

Yenidoğanlarda sağa doğru komponentin az gelişmiş olduğu görülmesine rağmen, CTR’yi sağ tarafa çeken hepatik arterdir33,34.

CMT ile ilişkili patolojileri veya diğer altta yatan hastalıkları bilmek çok önemlidir. Anevrizma15, stenoz16, tromboz13,14, mezenterik iskemi13,16, arteriyel kompresyon (mesela medyan arkuat ligament sendromu)15 ve Nutcracker sendromu35 CMT ile ilişkilendirilebilirler, önemli sonuçları olabilir ve özellikle oklüzif hastalıklarda sağkalımı etkileyebilir13. Burada BT, varyasyonun saptanmasında önemli bir rol oynar. Ayrıca, yeni bir teknik olarak, rastgele örnekleme hesaplama algoritmaları ve farklı ışık haritaları ile sinematik oluşturma, BT verilerinden anatomik ayrıntıların gerçekçi bir tasvirini sağlar36.

Çalışmanın Kısıtlılıkları

BT anjiyografik incelemeleri olan az sayıda hasta (1,919 hasta popülasyonundan 23 CMT’si) ile yürütülmüş olmasıdır. Varyasyon insidansı nadir olmakla birlikte, bu çalışmaya katılan hasta popülasyonu ülke çapında çalışmalara dahil edilen en büyük hasta popülasyonuna sahiptir. Ancak sadece üç kadın hasta nedeniyle bu çalışmada homojen bir örneklem grubu yoktu. Çalışmanın retrospektif yapısı nedeniyle, hastalar morfolojilerine göre leptozom veya piknik tip olarak sınıflandırılamadı.

CONCLUSION

Having knowledge about arterial variations such as CMT is very important for both surgical approach and planning of interventional procedures and management of CMT-related pathologies. Particularly in vascular interventions, morphometric features of the arterial structures are most of value. As a result, in this study, CMT was found to be mostly type 1, as well as downward (17 degrees±14.28) and left-sided (73 degrees±6.88) orientation.

Ethics

Ethics Committee Approval: Tekirdağ Namık Kemal University Local Ethical Committee of the institution approved the study protocol (approval number: 2020.39.02.13).
Informed Consent: Retrospective study.
Peer-review: Externally peer-reviewed.
Financial Disclosure: The author declared that this study received no financial support.

References

1
Sehgal G, Srivastava AK, Sharma PK, Kumar N, Singh R, Parihar A, et al. Morphometry of the celiac trunk: a multidetector computed tomographic angiographic study. Journal of the Anatomical Society of India. 2013;62:23-7.
2
Selvaraj L, Sundaramurthi I. Study of Normal Branching Pattern of the Coeliac Trunk and its Variations Using CT Angiography. J Clin Diagn Res. 2015;9:AC01-4.
3
Standring S. Gray’s Anatomy. 39th ed. Edinburgh; New York, NY: Elsevier Churchill Livingstone; 2005.
4
Santos PVD, Barbosa ABM, Targino VA, Silva NA, Silva YCM, Barbosa F, et al. ANATOMICAL VARIATIONS OF THE CELIAC TRUNK: A SYSTEMATIC REVIEW. Arq Bras Cir Dig. 2018;31:1403.
5
Panagouli E, Venieratos D, Lolis E, Skandalakis P. Variations in the anatomy of the celiac trunk: A systematic review and clinical implications. Ann Anat. 2013;195:501-11.
6
Song SY, Chung JW, Yin YH, Jae HJ, Kim HC, Jeon UB, et al. Celiac axis and common hepatic artery variations in 5002 patients: systematic analysis with spiral CT and DSA. Radiology. 2010;255:278-88.
7
Yi SQ, Terayama H, Naito M, Hayashi S, Moriyama H, Tsuchida A, et al. A common celiacomesenteric trunk, and a brief review of the literature. Ann Anat. 2007;189:482-8.
8
Cavdar S, Sehirli U, Pekin B. Celiacomesenteric trunk. Clin Anat. 1997;10:231-4.
9
Obara H, Matsumoto K, Fujimura N, Ono S, Hattori T, Kitagawa Y. Reconstructive surgery for a fusiform common celiomesenteric trunk aneurysm and coexistent abdominal aortic aneurysm: report of a case. Surg Today. 2009;39:55-8.
10
Ozgokce M, Ayyıldız VA, Ogul H, Arslan H, Batur A, Yavuz A, et al. Common coeliacomesenteric trunk: a computed tomography radiological study. Folia Morphol (Warsz). 2018;77:683-6.
11
Tang W, Shi J, Kuang LQ, Tang SY, Wang Y. Celiomesenteric trunk: New classification based on multidetector computed tomography angiographic findings and probable embryological mechanisms. World J Clin Cases. 2019;7:3980-9.
12
Whitley A, Oliverius M, Kocián P, Havlůj L, Gürlich R, Kachlík D. Variations of the celiac trunk investigated by multidetector computed tomography: Systematic review and meta-analysis with clinical correlations. Clin Anat. 2020;33:1249-62.
13
Kueht ML, Wu DL, Mills JL, Gilani R. Symptomatic Celiomesenteric Trunk: Variable Presentations and Outcomes in 2 Patients. Tex Heart Inst J. 2018;45:35-8.
14
Lovisetto F, Finocchiaro De Lorenzi G, Stancampiano P, Corradini C, De Cesare F, Geraci O, et al. Thrombosis of celiacomesenteric trunk: report of a case. World J Gastroenterol. 2012;18:3917-20.
15
Lee V, Alvarez MD, Bhatt S, Dogra VS. Median arcuate ligament compression of the celiomesenteric trunk. J Clin Imaging Sci. 2011;1:8.
16
Ratra A, Campbell S. Recurrent Mesenteric Ischemia from Celiomesenteric Trunk Stenosis. Cureus. 2018;10:2751.
17
Pannatier M, Duran R, Denys A, Meuli R, Zingg T, Schmidt S. Characteristics of patients treated for active lower gastrointestinal bleeding detected by CT angiography: Interventional radiology versus surgery. Eur J Radiol. 2019;120:108691.
18
Prakash, Mokhasi V, Rajini T, Shashirekha M. The abdominal aorta and its branches: anatomical variations and clinical implications. Folia Morphol (Warsz). 2011;70:282-6.
19
Songür A, Toktaş M, Alkoç O, Acar T, Uzun İ, Baş O, et al. Abdominal Aorta and Its Branches: Morphometry - Variations In Autopsy Cases. Eur J Gen Med. 2010;7:321-5.
20
Best IM, Pitzele A, Green A, Halperin J, Mason R, Giron F. Mesenteric blood flow in patients with diabetic neuropathy. J Vasc Surg. 1991;13:84-9.
21
Kozhevnikova TI. Individual’nye i vozrastnye osobennosti v stroenii chrevnogo stvola cheloveka [Age and individual characteristics in the structure of the celiac trunk in man]. Arkh Anat Gistol Embriol. 1977;72:19-25.
22
Silveira LA, Silveira FB, Fazan VP. Arterial diameter of the celiac trunk and its branches. Anatomical study. Acta Cir Bras. 2009;24:43-7.
23
Walker TG. Mesenteric vasculature and collateral pathways. Semin Intervent Radiol. 2009;26:167-74.
24
Lipshutz B. A Composite Study of the Coeliac Axis Artery. Ann Surg. 1917;65:159-69.
25
Adachi B, Hasebe K, Kyōto Teikoku Daigaku, Kenkyūsha, History of Medicine Collection (David M. Rubenstein Rare Book & Manuscript Library), Paul Kligfield Collection (David M. Rubenstein Rare Book & Manuscript Library). Das Arteriensystem der Japaner. 1928.
26
Morita M. Reports and conception of three anomalous cases on the area of the celiac and the superior mesenteric arteries. Igaku Kenkyu (Acta Med). 1935;9:1993-2006.
27
Michels N. Blood supply and anatomy of the upper abdominal organs, with a descriptive atlas. J.B. Lippincott Company, Philadelphia; 1955.
28
Uflacker R. Atlas of Vascular Anatomy: An Angiographic Approach. 1st ed. Philadelphia PA: Lippincott Williams & Wilkins; 1997.
29
Chen H, Yano R, Emura S, Shoumura S. Anatomic variation of the celiac trunk with special reference to hepatic artery patterns. Ann Anat. 2009;191:399-407.
30
Venieratos D, Panagouli E, Lolis E, Tsaraklis A, Skandalakis P. A morphometric study of the celiac trunk and review of the literature. Clin Anat. 2013;26:741-50.
31
Petnys A, Puech-Leão P, Zerati AE, Ritti-Dias RM, Nahas WC, Neto ED, et al. Prevalence of signs of celiac axis compression by the median arcuate ligament on computed tomography angiography in asymptomatic patients. J Vasc Surg. 2018;68:1782-7.
32
Vandamme JP, Bonte J. Vascular anatomy in abdominal surgery. 1st ed. New York, NY: Thieme Medical Pub; 1st edition. Jan 15, 1990.
33
Gielecki J, Zurada A, Sonpal N, Jabłońska B. The clinical relevance of coeliac trunk variations. Folia Morphol (Warsz). 2005;64:123-9.
34
Saeed M, Murshid KR, Rufai AA, Elsayed SE, Sadiq MS. Coexistence of multiple anomalies in the celiac-mesenteric arterial system. Clin Anat. 2003;16:30-6.
35
Peterson J, Hage AN, Diljak S, Long BD, Marcusa DP, Stribley JM, et al. Incidental Anatomic Finding of Celiacomesenteric Trunk Associated with ‘Nutcracker Phenomenon,’ or Compression of the Left Renal Vein. Am J Case Rep. 2017;18:1334-42.
36
Dappa E, Higashigaito K, Fornaro J, Leschka S, Wildermuth S, Alkadhi H. Cinematic rendering - an alternative to volume rendering for 3D computed tomography imaging. Insights Imaging. 2016;7:849-56.